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A generalized Langevin equation with quantum heat baths �quantum molecular dynamics �QMD�� for
thermal transport is derived with the help of nonequilibrium Green’s function �NEGF� formulation. The exact
relationship of the quasiclassical approximation to NEGF is demonstrated using Feynman diagrams of the
nonlinear self-energies. To leading order, the retarded self-energies agree but QMD and NEGF differ in
lesser/greater self-energies. An implementation for general systems using Cholesky decomposition of the
correlated noises is discussed. Some means of stabilizing the dynamics is given. Thermal conductance results
for graphene strips and carbon nanotubes are presented. The “quantum correction” method is critically
examined.
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I. INTRODUCTION

Molecular dynamics1 �MD� has been used as one of the
most important simulation tools to study a variety of prob-
lems from structure to dynamics. In particular, MD is rou-
tinely used for thermal transport problems.2,3 MD is versatile
and can handle with ease any form of classical interaction
forces. The computer implementation of the algorithms is
straightforward in most cases. However, there is one essen-
tial drawback in MD—it is purely classical, thus it is unable
to predict quantum behavior. Of course, in situations like
high temperatures and atoms other than hydrogen, MD gives
good approximation. This is not the case for very small sys-
tems such as nanostructures at low temperatures. For lattice
vibrations, the relevant temperature scale is the Debye tem-
perature, which is quite high for carbon-based materials.
Thus, even the room temperature of 300 K is already con-
sidered a low temperature. One uses MD anyway in cases
where quantum effects might be important for lack of better
alternative approaches.

The desire to incorporate quantum effect in an otherwise
classical MD has led to a number of proposals.4–7 Recently,
it was proposed that MD can be augmented with a quantum
heat bath to at least partially take into account the quantum
effect.8 We will refer to this new molecular dynamics as
quantum molecular dynamics �QMD�. The proposed gener-
alized Langevin dynamics with correlated noise obtained ac-
cording to Bose distribution has the important features that it
gives correct results in two special limits, the low-
temperature ballistic limit and high-temperature diffusive
limit. It is one of the very few methods that ballistic to dif-
fusive transport can be studied in a single unified framework.
The QMD should be most accurate for systems with strong
center-lead couplings. The non-Markovian heat baths have
an additional advantage in comparison with the usual Lange-
vin or Nosé-Hoover heat baths in that the baths �the leads�
and the systems can be connected seamlessly without ther-
mal boundary resistance.

In this paper, we follow up the work of Ref. 8 to give
further details and calculations on large systems. After a brief
derivation of the quantum generalized Langevin equation

and discussing its semiclassical approximation, we consider
the implementation of general colored noises with several
degrees of freedom. We then discuss the problem of insta-
bilities we encountered in carrying out the simulation. Vari-
ous ways of overcoming this difficulty are suggested and
tested. Some intuition of this instability is given. We analyze
the proposed dynamics and compare it with the exact non-
equilibrium Green’s function �NEGF� method9 in terms of
Feynman diagrams and nonlinear self-energies. Here we
show that in the ballistic case, the generalized Langevin dy-
namics and NEGF are completely equivalent. Using this
analysis, it is also clear that at high temperatures NEGF and
Langevin dynamics should agree for nonlinear systems. We
then report some of the simulation results on nanoribbons
�with periodic boundary condition in the transverse direc-
tion� and nanotubes. For small systems, the QMD results are
in good agreement with ballistic NEGF. We carry on to simu-
late large systems where nonlinearity becomes important and
NEGF becomes computationally intractable. A crossover
from ballistic to diffusive regime is seen in nanoribbons and
nanotubes. Our QMD gives quantum results. In this connec-
tion, we comment on one popular method of “quantum cor-
rection” after a classical MD simulation and point out its
shortcomings and inconsistencies. We conclude in the last
section.

II. GENERALIZED LANGEVIN DYNAMICS AND
IMPLEMENTATION DETAILS

The derivation of the generalized Langevin equation for
junction systems was given in Ref. 8, see also Refs. 10 and
11. Here we present a much faster derivation using the re-
sults of NEGF, following the notations introduced in Ref. 9.
The starting point is the set of quantum Heisenberg equations
of motion for the leads and center,

üC = FC − VCLuL − VCRuR, �1�

ü� = − K�u� − V�CuC, � = L,R , �2�

where u� is a vector of displacements in region � away from
the equilibrium positions, multiplied by the square root of
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mass of the atoms. The leads and the coupling between the
leads and center are linear while the force in the center,
FC�uC�=−KCuC+Fn, is arbitrary. Fn stands for the nonlinear
part of the forces in the center. We eliminate the lead vari-
ables by solving the second equation and substituting it back
into the first equation. The general solution for the left lead is

uL�t� = u0
L�t� + �t

gL
r �t − t��VLCuC�t��dt�, �3�

where gL
r �t� is the retarded Green’s function of a free left

lead with the spring constant matrix KL, satisfying
g̈L

r �t�+KLgL
r �t�=−��t�I, gL

r �t�=0 for t�0. Its Fourier trans-
form is given by ���+ i��2−KL�−1, where �→0+ is an infini-
tesimal positive quantity. u0

L�t� satisfies the homogeneous
equation of the free left lead

ü0
L + KLu0

L = 0. �4�

gL
r �t� and u0

L�t� are associated with the semi-infinite “free”
lead in the sense that leads and center are decoupled, as if
VCL=0. This is consistent with an adiabatic switch on of the
lead-center couplings. The right lead equations are similar.
Substituting Eq. �3� into Eq. �1�, we obtain

üC = FC − �t

�r�t − t��uC�t��dt� + 	 , �5�

where �r=�L
r +�R

r , ��
r =VC�g�

r �t�V�C, is the self-energy of
the leads and the noise is defined by 	��t�=−VC�u0

��t� and
	=	L+	R.

The most important characterization of the system is the
properties of the noises. This is fixed by assuming that the
leads are in respective thermal equilibrium at temperature TL
and TR. In order for the leads behaving like heat baths in the
thermodynamic sense, it is necessary that the sizes of the
leads are infinite. It is obvious that for a set of coupled har-
monic oscillators, there is no thermal expansion effect,
�u0

��t��=0, thus �	��=0. The correlation function of the noise
is

�	L�t�	L
T�t��� = VCL�u0

L�t�u0
L�t��T�VLC

= VCLi
gL
��t − t��VLC

= i
�L
��t − t�� , �6�

where the superscript T stands for matrix transpose. We have
used the definition of greater Green’s function and self-
energy of the free left lead.9 We assume that the noises of the
left lead and right lead are independent. Since the noises
	��t� are quantum operators, they do not commute in general.
In fact, the correlation in the reverse order is given by the
lesser self-energy,

�	L�t��	L
T�t��T = i
�L

��t − t�� . �7�

Equation �5� together with the noise correlations Eqs. �6�
and �7� is equivalent to NEGF approach. For the quantum
Langevin equation, it is not sufficient to completely charac-
terize the solution by just the first and second moments of the
noises. We need the complete set of n-point correlators
�	�t1�	�t2�¯	�tn��, which is, in principle, calculable from the
equilibrium properties of the lead subsystem.12 It is very

difficult to solve the dynamics unless the nonlinear force Fn
is zero. Thus, for computer simulation in the quantum
molecular-dynamics approach, we have replaced all
operators by numbers and a symmetrized noise,
i
 1

2 ����t�+���t��= i
�̄�t�, is used. This is known as quasi-
classical approximation in the literature.13,14

A. Implementation

The formula for the noise spectrum of the left lead is

F��� = i
�̄L��� = 
� f��� +
1

2
	L��� , �8�

where f���=1 / �e
�/�kBTL�−1� is the Bose distribution func-
tion and L���= i��L

r ���−�L
a����. The right lead is analo-

gous. The surface Green’s functions g�
r are obtained using an

iterative method.9,15 The usual method of generating colored
noise is to design a new dynamics, driven by a white noise,
to get the required form of the noise. This is efficient but
works only for specific analytic form of a spectrum. We pre-
fer a very general method using Fourier transform.16 To gen-
erate the multivariate Gaussian distribution with an arbitrary
correlation matrix, we use the algorithm discussed in Ref.
17. That is, we do Z=cX, where X is a complex vector fol-
lowing standard uncorrelated Gaussian with unit variance for
both real and imaginary parts, one for each discretized fre-
quency, while ccT=F��� and c is a lower triangular real ma-
trix. c is obtained by Cholesky factorization18 from a LAPACK

routine �DPOTRF�. The Cholesky decomposition is performed
only once. The frequency array of lower triangular matrices
c is stored. The Fourier transform of Z gives the noise in time
domain, which is obtained using a fast Fourier transform
algorithm. More specifically,

	�t� =
1


2hN
�
k=1

N/2−1

c��k�Xke
−i�kt + c.c., �9�

where �k=2�k / �hN�, h is the MD step size, and c.c. stands
for complex conjugate of the preceding term. One can verify
that 	�t� indeed has the required correlation. In principle we
should use as large a value as possible for N but it is limited
by available computer memory. Typically we use 105–106

sampling points.

B. Overcoming instability

We have implemented the second generation reactive em-
pirical bond order Brenner potential19 for carbon with the
special restriction that the coordination numbers are always
three. This is valid for carbon nanotubes and graphene sheets
with small vibrations in thermal transport. We found that a
naive implementation of the QMD in higher dimensions un-
stable. The atoms close to the leads have a tendency to run
away from the potential minima and go to infinity. Several
ways were tried to stabilize the system.

�1� Instead of integrating over the coordinates uC�t� in the
memory kernel, we can perform an integration by part and
consider integrating over velocity. This form of the general-
ized Langevin equation resembles more of the standard
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Langevin equation of velocity damping but there will be an
extra force-constant term, as follows:

üC = FC + ��0�uC − �t

�t − t��u̇C�t��dt� + 	 , �10�

where �t� is defined by Eq. �14� below. We introduce a
parameter �, which should take the value 1 but using a
smaller value can stabilize the system. However, ��1 intro-
duces boundary resistance. The parameter � has the follow-
ing physical meaning. If �=0, the system is clamped by the
leads; that is, the force contained in FC is such that atoms in
the leads are fixed at their lattice equilibrium positions. This
breaks the translational invariance. The � term is a renormal-
ization of the force due to the baths. If �=1, the translational
invariance of the original lattice is restored.

�2� We scale up the force constants of the leads by a factor
of f . This broadens the lead spectra to be closer to white
noise, thus better damping.

�3� We add an additional on-site force on each atom, with
a linear force constant Kon-site, as well as a small u4 nonlinear
force. This further breaks translational invariance so that the
atoms are fixed near their equilibrium positions.

�4� We smooth the noise spectrum by choosing a small
number of points, say 100 to 1000 sampling points in fre-
quency. We add an artificial damping, e−�t to Eq. �14�. This
cuts off the memory kernel to be short ranged in time so that
the integration can be done with fewer points.

�5� We implemented three algorithms: velocity Verlet,
fourth-order Runge-Kutta, and an implicit two-stage fourth-
order Runge-Kutta.20 We propose the above �1�–�5� to fix the
instability. Not all of the measures are effective. We feel
perhaps the most important points are �1� and �4�. The extra
parameters �, f , Kon-site, and � will be stated when discussing
the results.

Why the system is unstable with �=1, f =1, Kon-site=0,
and �=0? Perhaps it is due to the fact that system wants to be
translationally invariant. In one dimension, the possible
movements of the particles are fairly restricted and also the
damping kernels are simple smooth functions, the system is
always stable. The situation in three dimensions is rather
complicated. Subtle numerical errors in the integration of the
memory term and noises could cause the system unbalanced
and destroy stability. However, if we set �=0 to clamp the
system, we find it again stable. There is another problem
related to stability, which will be discussed in the next sec-
tion.

III. DELTA-PEAK SINGULARITIES IN LEAD
SELF-ENERGY

For a one-dimensional �1D� harmonic chain with a uni-
form spring constant K, the lead self-energy is given by
�r���=−K�, where � satisfies K�+ ��+ i��2−2K+K /�=0
and ����1. Both the real part and imaginary part are smooth
functions of the angular frequency �. However, this is not
true in general. For sufficiently complex leads, we find
�-functionlike peaks on an otherwise smooth background,
see Fig. 1. What is plotted in Fig. 1 is the surface density of
states �DOS� defined according to

Ds��� = −
2�

�
Im Tr gL

r ��� . �11�

The above formula gives the bulk phonon density of states if
gr is replaced by the central part Green’s function Gr. The
peaks in Fig. 1 are not numerical artifacts but real singulari-
ties in the semi-infinite lead surface Green’s function or self-
energy. If we omit them, the identity �a special case of the
Kramers-Kronig relation�

�r�� = 0� = �
−�

+� d�

�

Im �r���
�

�12�

will be violated. These sparks are indeed � functions. As the
small quantity � in ��+ i��2 decreases, the peaks become
higher and narrower but the integral in a fixed interval
around the peak remains constant. These peaks are not re-
lated to the van Hove singularities of bulk system density of
states, as the locations of the peaks are not at these associated
with zero group velocities. The singularities of the self-
energy can be approximated as proportional to

1

� − �0 + i�
 P

1

� − �0
− i���� − �0� , �13�

where P stands for principle value.
To interpret these peaks, we did a calculation of the vi-

brational eigenmodes for a finite system. We find localized
modes with frequencies matching that of the delta peaks in
Ds���. We use “General Utility Lattice Program” �GULP�
�Ref. 21� to calculate the phonon modes of graphene strip,
with fixed boundary condition in x direction and periodic
boundary condition in y direction. These boundary condi-
tions are the same as that in the calculation of lead surface
Green’s function. Six localized modes are found in �n ,2�
graphene strips. Figure 2 shows the normalized vibrational
amplitude of each atom in all six localized modes of �10,2�
�solid line� and �20,2� graphene strip �dotted line�. In these
modes the vibrational amplitude decreases exponentially to
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FIG. 1. The surface density of states Ds��� vs frequency for a
�n ,2� zigzag graphene strip with �1,2� of eight atoms as a repeating
unit cell. The delta peaks are located at 566, 734, 1208, 1259, 1287,
and 1632 cm−1. The rest of the peaks do not diverge as �→0.
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zero from edge into the center. The frequency of these local-
ized modes are 561.5, 741.3, 1193.5, 1264.5, 1279.6, and
1636.0 cm−1. These values match very well to that of the
delta peaks in Ds��� shown in Fig. 1. These frequency values
are the same in �10,2� and �20,2� graphene strips. After a
critical distance Lc from the edge, the vibration amplitude
decreases to zero. Lc is the same in �10,2� and �20,2�
graphene strips. So these localized modes are relatively more
“localized” in longer graphene strip as shown in Fig. 2. Be-
cause of their localizing property, these modes are important
in thermal transport. There are localized modes both at the
edges of leads and edges of center. They have opposite effect
on the thermal conductance. �1� Localized modes at the
edges of leads are beneficial for thermal conductance. Be-
cause in these modes, atoms at the edges of leads have very
large vibration amplitude. As a result, thermal energy can
transport from leads into center more easily. �2� Localized
modes at the edges of the center have negative effect on
thermal conductance. In these modes, only outside atoms
have large vibrational amplitudes while inside atoms have
small vibration amplitudes or even do not vibrate at all. So
thermal energy is also localized at the edges, making it dif-
ficult to be transported from one end to the other end. The
effects of �1� and �2� are such that the net result is equivalent
to a perfect periodic system without boundary resistance.

The localized modes are a consequence of dividing the
infinite system abruptly and artificially into leads and center.
Implementing these delta-peak singularities in a QMD simu-
lation is impossible since these modes are not decaying in
time for the real-time self-energy �r�t�. Thus, we are forced
to remove these peaks from the imaginary part of �r and
reconstruct a real part using the Hilbert transform from the
imaginary part with the delta peaks removed. The damping
kernel for the QMD dynamics is computed from �for t�0�

�t� = − �
t

+�

�r�t��dt� = �
−�

+� d�

�

Im �r���
− � + i�

e−i�t−�t.

�14�

In practice, the removal of the peaks is done by choosing a
small � �10−8�. Since the sampling of � is at a finite spac-

ing, typically with about 103 points, we almost always miss
the peaks if � is tiny.

In calculating the ballistic transmission through the Caroli
formula,9,22 the omission of the delta peaks at a set of points
of measure zero has no consequence. However, the existence
of the singularities is also reflected through the real part of
the self-energy. If the real part uses the Hilbert transformed
version with the delta peaks omitted, the transmission coef-
ficient T��� will not be flat steps as expected for a perfect
periodic system. Thus, removing the delta peaks consistently
means we are using a lead that is modified from the original
one.

IV. DIFFERENCE BETWEEN QMD AND NEGF:
A FEYNMAN DIAGRAMMATIC ANALYSIS

In this section, we give an analysis of the difference be-
tween fully quantum-mechanical NEGF and the quasiclassi-
cal generalized Langevin dynamics. A similar result was pre-
sented in Ref. 23 briefly for the case of electron-phonon
interaction. The starting point is a formal solution of Eq. �5�
with the quasiclassical approximation and a symmetrized
correlation matrix for the noise,

u�t� = −� Gr�t,t���	�t�� + Fn�t���dt�, �15�

where we have omitted the superscript C on u for simplicity,
Gr is the retarded Green’s function of the central region for
the ballistic system �when Fn=0�. The Fourier transform of
Gr is given by

Gr��� = ��� + i��2 − KC − �r����−1. �16�

We have also left out a possible term satisfying a homoge-
neous equation �Eq. �5� when 	=Fn=0� and depending on
the initial conditions. Physically, such term should be
damped out. Provided that the central part is finite, such term
should not be there and this is consistent with the fact that
the final results are independent of the initial distribution of
the central part in steady states.

We consider the expansion of the nonlinear force of the
form

�Fn�i = − �
j,k

Tijkujuk − �
j,k,l

Tijklujukul, �17�

where Tijk and Tijkl are completely symmetric with respect to
the permutation of the indices. From repeated substitution of
Eq. �15� back into itself, we can see that u�t� is expressed as
polynomials of Gr and 	. The first few terms are

ui�t� = − �
j
� dt�Gij

r �t,t��	 j�t��

+� dt�� dt1� dt2 �
j,k,k�,l,l�

TjklGij
r �t,t��

� Gk,k�
r �t�,t1�Gl,l�

r �t�,t2�	k��t1�	l��t2� + ¯ . �18�

The correlation functions of u can then be calculated by av-
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FIG. 2. �Color online� Normalized vibration amplitudes vs re-
duced coordinate x of each carbon atom. From �a� to �f� are six edge
modes in �10,2� graphene strip �solid line� and �20,2� graphene strip
�dotted line�. The frequency � for each mode given in the figure is
in cm−1.
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eraging over the distribution of the noises. In particular,
product of an odd number of 	 averages to 0 and

�	 j�t�	k�t��� = i
�̄ jk�t,t�� . �19�

Using the fact that the noise is Gaussian and Wick’s theorem
applies, the average of any even number of 	 is decomposed

in terms of �̄ in the usual way. It is advantageous to define
two types of �quasiclassical� Green’s functions as

−
i



�u�t�uT�t��� � Gn�t,t�� , �20�

i



�u�t�	L

T�t��� � � Gn
r�t,t���̄L�t�,t��dt�. �21�

When the expression of u�t�, Eq. �18�, is substituted into Eqs.
�20� and �21�, the equations get very complicated. Thus, it is
best to represent these equations in terms of diagrams. The
calculation is tedious but straightforward.

The energy current is calculated by the amount of de-
crease in energy in the left �or right� lead

IL = − �HL

dt
� = −

�

�t
�uC�t�TVCLuL�t����t=t�=0. �22�

We can replace uL with the solution, Eq. �3�. Going into the
Fourier space and some algebraic manipulation, we can write

IL = − �
−�

+� d�

2�

� Tr�Gn

r����̄L��� + Gn����L
a���� , �23�

where the Fourier transform is defined in the usual way, e.g.,
G���=�−�

+�G�t�ei�tdt. The above equation has the same form
as the NEGF one, provided that we can identify the quasi-
classical Green’s functions defined in Eqs. �20� and �21� with

the quantum ones, Ḡ= 1
2 �G�+G�� and Gr. �It looks slightly

different from the expression of Eq. �5� in Ref. 24, where
only G� appears. There is an error in that paper. One should
take the real part of that expression or add its complex con-
jugate. By doing this, we obtain a symmetrized expression
with respect to G� and G�.�

We compare Gn
r and Gn with their fully quantum-

mechanical counterpart Gn
r and Ḡn through the nonlinear

self-energies. It is not known if a Dyson equation for Gn
r is

still valid in the sense that the self-energy contains only ir-
reducible graphs but we simply “define” the retarded nonlin-
ear self-energy through

�n
r = �Gr�−1 − �Gn

r�−1 �24�

and similarly define �n by

Gn = Gn
r��̄ + �n�Gn

a. �25�

To simplify the representation of the diagrams, we have used
the fact that Gjl

r �t , t��=Glj
a �t� , t�, Gjl

��t , t��=Glj
��t� , t�, and the

Keldysh relation in frequency domain Ḡ=Gr�̄Ga. In Fig. 3
we give the lowest-order diagrams of the two types of self-
energies and contrast with the NEGF results. Numerous
cross terms involving products of Tijk and Tijkl are not

shown. The NEGF results are obtained in Ref. 25 �Fig. 3� for
the contour ordered version, here we have separated out ex-

plicitly for �n
r and �̄n= 1

2 ��n
�+�n

��. It is clear from Eqs. �24�
and �25� that when the nonlinear couplings Tijk and Tijkl are

zero, we have Gn
r =Gr and Gn= Ḡ. Thus, for ballistic systems,

NEGF and quasiclassical MD agree exactly. To leading order
in the nonlinear couplings �O�Tijk

2 � and O�Tijkl�� the retarded
nonlinear self-energies agree. The difference starts only at a
higher order. The fact that QMD is correct to leading order in
the retarded self-energy means that the phonon life time in
QMD is correct to leading order in the nonlinearity. This is a
significant and important theoretical result. The self-energies

�̄n disagree even at the lowest order. The NEGF and quasi-
classical diagrams become the same if we take the “classical
limit” 
→0 with a new definition of classical Green’s func-

tions Gr→Gcl
r and 
G�
G�→ Ḡcl. In this limit, the dis-

tinction between G� and G� disappears. The extra diagrams
go to zero because they are high orders in 
.

V. TESTING RUNS AND COMPARISON WITH NEGF

After the theoretical considerations, we now discuss com-
puter simulation results. Figure 4 is the configuration of a
system in the simulation. There are four atoms in the trans-
lational period. A pair of numbers �n ,m� is introduced to
denote the number of periods in the horizontal and vertical
directions. They should not be confused with the chirality
indices of the nanotubes. This figure shows the particular
case of armchair graphene strip with �n ,m�= �4,2�. For zig-
zag configurations, the unit cell is rotated by 90°. In the
vertical direction, a periodical boundary condition is applied.
In the simulation box, atoms in the leftmost columns labeled
0–7 are fixed left lead, atoms in the rightmost columns la-
beled 28–35 are the fixed right lead, and the heat baths are
applied to the columns close to them. The temperatures of

= 4ih + 2ih + (-18h )+ 3ih + (-18h )

= 2ih + (-6h )

= 4ih + 2ih + (-18h )+ 3ih

+ (-18h )

+ (-9h )

+ (-18h ) + (-6h )

= ih + (-3h )+ ih + (-3h )

Σr

Σ

Σr

Σ

c

c

2

2

2

2

2 2

2 2 2

2

FIG. 3. The top two lines are for the quasiclassical self-energies
�n

r and �n; the next two lines are the corresponding NEGF results.

A line without arrow represents Ḡ. A line with an arrow represents
Gr when read following the arrow or Ga when read against the
direction of arrow. A line with single sided arrow represents G�

when following the arrow and G� when read against the sense of
arrow.
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the leads are set according to TL=T�1+�� and TR=T�1−��.
The thermal conductance is computed from �= IL / �TL−TR�.

Test runs, shown in Fig. 5, are with parameters �=0.4,
�=0.6, f =1.2, Kon-site=0.01 �eV / �Å2u��, and �=0.001
�1014 Hz� with the geometry of Fig. 4, using an MD step
size h=0.2 fs with a total of about 107 steps. The kernel
integration is cutoff after about 4000 steps. The results dem-
onstrate that QMD implemented by the velocity Verlet and
fourth-order Runge-Kutta gives the correct results in com-
parison with ballistic NEGF. For a system of such small
sizes, the conductance behaves ballistically. The one imple-
mented by the velocity Verlet agrees very well with the
NEGF result in the low-temperature regime. Other imple-
mentation methods, such as an implicit two-stage fourth-
order Runge-Kutta, also turn out to give similar results.
Thus, the results are rather insensitive to the integration al-
gorithms used. This suggests the success of simulating quan-
tum transport not only for the one-dimensional quartic on-
site model8 but also for the large systems. Due to the
artificial parameters added in order to overcome the instabil-
ity, the thermal conductance obtained was slightly higher

than the ballistic one in high-temperature regime. We note
that the parameters �, f , and Kon-site are incorporated in the
NEGF calculation, the effect of � is not taken care correctly
in NEGF. This may explain the discrepancy at high tempera-
tures. We further investigate the � dependence of the thermal
conductance for the �4,2� graphene strip: the inset of Fig.
5�a� represents the room-temperature �300 K� results, where
the thermal conductance exhibits approximately linear de-
pendence on �. The conductance reduces by about half when
� is reduced from 1 to 0. Besides �, other parameters also
have their own impacts, for instance, a smaller � lowers the
effect of the artificial damping but requires much larger in-
tegration domain and therefore brings the risk of truncating
the spectrum and providing the wrong self-energy. The con-
ductance is independent of � if it is in the range 0.001–0.02.

VI. RESULTS OF NANORIBBON UNDER TENSION

In the simulation, typical MD steps are 105 of 0.5 fs,
which is long enough to obtain converged thermal conduc-
tance. The stabilizing factor is �=0.6 with an on-site force
constant for all the atoms Kon-site=0.01 eV / �Å2u� and other
parameters f =1.2 and �=10−3 �1014 Hz�.

Figure 6 shows the dependence of the thermal conduc-
tance on the length �L� of the system for �n ,2� zigzag
graphene strip at 300 K. There are three regions labeled �I�,
�II�, and �III� in the figure, respectively, for L in �10,100�,
�100,600�, and �600,1400� Å. In the very short length re-
gion �I�, thermal transport should be in the ballistic regime,
where thermal conductance is a constant independent of the
length of the system. But here the thermal conductance ex-
hibits decreasing behavior. Actually, this decreasing behavior
is mainly attributed to the localized modes at the edge of the
center region. As shown in Fig. 2, these modes will be more
localized in longer graphene strips. So they make little con-
tribution to the thermal transport in short graphene strips due
to their localizing property and even this little contribution is
further reduced with increasing length. That is the reason for
the decrease in thermal conductance in this length region.
After L100 Å, these localized modes are fully localized,
so they do not contribute to the thermal conductance any-
more. In region �II�, the thermal transport is in the ballistic

FIG. 4. �Color online� The structure for an armchair graphene
strip with �n ,m�= �4,2�. The box �red online� is the translational
period.
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FIG. 5. �Color online� A comparison of temperature dependence
of the thermal conductance for an armchair graphene strip with
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regime, where the thermal conductance is more or less a
constant. In region �III�, this curve decreases as L increases,
indicating crossover to the diffusive thermal transport. This
length scale is consistent with previous theoretical results.26

Thermal conductance in this region can be fitted by a power
function �=6.1L−0.66 �solid line�. So the thermal conductiv-
ity is proportional to the length as L0.34. This exponent 0.34
agrees with previous results on nanotubes and other
quasi-1D systems.27–29

The associated values of thermal conductivity, �=�L /S,
where L is length and S is cross-section area, is too small.
The smallness is attributed to the boundary resistance caused
mainly by ��1 and the omission of the delta peak lead
self-energies. For a perfect 1D system of �� ,2� the conduc-
tance with the Brenner potential is 0.72 nW/K from a ballis-
tic NEGF calculation. If the leads are replaced by those of
omitting the delta peaks as discussed in Sec. III, the NEGF
�4,2� system result that is consistent with our simulation
setup is reduced to 0.19 nW/K. This is quite close to, but still
some discrepancy with, QMD result. These may be due to
nonlinearity and other unexplained systematic errors.

In Fig. 7, the effect of strain on the thermal conductance
of graphene is displayed for a system of zigzag �4,2�. To
mimic the experimental condition,30–32 the strain is intro-
duced in two steps. First, the strain is generated to the whole
graphene system in Fig. 4. Second, atoms in the center are
fully relaxed with left and right leads fixed. And we then do
the MD simulation on this optimized graphene system. We
find that the thermal conductance increases with increasing
elongation on graphene. But compression on graphene does
not change the value of the thermal conductance appreciably.

To understand this strain effect on the thermal conduc-
tance, we study the DOS of the phonons in Fig. 8. The DOS
is calculated from the Brenner empirical potential as imple-
mented in GULP for �4,2� geometry with fixed boundary con-
ditions in x direction and periodically extended in y direc-
tion. We use GULP to do optimization for the strained
graphene with two leads fixed first and then calculate the
DOS of this relaxed system. As shown in Fig. 8�a�, the high-
frequency Raman-active mode �G mode� around 1600 cm−1

shows obvious redshift under extension strain, which agrees
with the recent experimental results.30,31 Furthermore, Fig.
8�b� predicts the blueshift of the G mode with compression
strain.

For thermal conductance of the graphene at room tem-
perature, the phonon modes with frequency about 200 cm−1

are important. We can see two significant modes �1 and 2� in
this frequency region in Fig. 8. When the graphene is elon-
gated, both modes 1 and 2 are blueshifted �Fig. 8�a��, which
results in increasing of thermal conductance. However, if the
graphene is compressed, modes 1 and 2 shift in opposite
directions �shown in Fig. 8�b��. As a result, the contribution
of these two modes to the thermal conductance cancels with
each other. That is the reason for the almost unchanged value
of the thermal conductance under compression.

VII. RESULTS ON NANOTUBES

Figure 9 shows our simulation results on zigzag carbon
nanotubes of chirality �5,0� with different lengths by using
the same parameters as that of the previous sections. Each
data point typically takes about 48 h on an AMD Opteron
CPU. The thermal conductivity is computed according to
�=�L /S, where L is the length of the sample and assuming
a cross-section area of S=12 Å2. Both the thermal conduc-
tance and thermal conductivity monotonically increase with
the temperature in the low-temperature regime, which agrees
with the available experimental data and demonstrates the
ability of QMD to predict the quantum effect in this regime.
This is completely neglected in the classical MD
approaches.28,33–36 For nanotubes with 12.8 nm �30,5� and
25.6 nm �60,5� length, as the temperature increases, the ther-
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mal conductance and corresponding thermal conductivity
start to drop at 850 K, this decrement is consistent with the
classical prediction, which indicates that the quantum correc-
tion becomes much smaller. Yet, such decline has not been
observed in the shorter case with a length of 4.26 nm. This
difference shows that a transition from ballistic to diffusive
happens when the length gets longer. The thermal conduc-
tance decreases but conductivity still increases with nano-
tubes length; we are still in transition to diffusive regime.29

However, the values at high temperatures are comparable to
previous MD results.

VIII. A CRITIQUE TO THE QUANTUM
CORRECTION METHOD

The quantum correction method was first suggested in
Refs. 37–39 and used by a number of researchers36,40–42

without carefully examining its validity, except that a com-
parison with lattice dynamics is made in Ref. 43. From the
simple kinetic theory of thermal transport coefficient, the
thermal conductivity can be written as �=1 / �3V��kckvklk,
where ck is the heat capacity of a mode k, vk and lk are the
associated phonon group velocity and mean-free path, and V
is the volume of the system. Provided that the phonon veloc-
ity vk and mean-free path lk of mode k are approximately
independent of k, we can argue that the quantum conductiv-
ity is scaled down by the quantum heat capacity from the
classical value. In quantum correction, the temperature is
also redefined such that the classical kinetic energy is
equated with the corresponding quantum kinetic energy of a
harmonic lattice. Here it is not clear whether the zero-point
motion should be included or not.36,38,44

To a large extent, a constant phonon velocity is a good
approximation. However, it is well known that the phonon
mean-free path is strongly dependent on the frequencies,
e.g., in Klemens’ theory for umklapp process,45 l��−2. To
what extent the quantum correction works is questionable.
There is one special case that we can answer this question
definitely, although this is for conductance, not conductivity.
Let us consider a 1D harmonic chain and compute its con-
ductance exactly and compare it with a classical dynamics
with quantum correction. The correct answer for the thermal
conductance is given by the Landauer formula,

�QM = �
0

� d�

2�

�T���

� f

�T
= �

0

�MAX

c���
d�

2�
, �26�

where the transmission T��� is one for a uniform chain,
�MAX=
4K /m is the maximum frequency for a chain with
spring constant K and mass m. c���=
�� f /�T is the heat
capacity of the mode at frequency �. The corresponding
classical value is obtained by approximating the Bose distri-
bution function with f kBT / �
��. This gives the correct
classical value of conductance as

�CL =
�MAX

2�
kB. �27�

Now we consider quantum correction to Eq. �27�. The total

quantum heat capacity of a 1D harmonic chain is

C = �
k

ck = L�
0

�MAX c���
v���

d�

�
, �28�

where v���=d� /dk= �a /2�
�MAX
2 −�2 is the phonon group

velocity. The classical value is NkB=LkB /a, a is lattice con-
stant.

According to the quantum correction scheme, the result
from a classical dynamics is corrected by multiplying the
classical value by the ratio of quantum to classical heat ca-
pacity, given

�CORR = �CL
C

NkB
= �

0

�MAX a�MAX

�v���
c���

d�

2�
. �29�

This does not agree with the correct quantum result of Eq.
�26�. There is no need to shift the classical temperature as
�CL is independent of the temperature. The heat capacity at
frequency � is weighted differently in two cases. Even if the
group velocity can be approximated by a constant by
v�0�=a
K /m, valid at very low temperatures, the two results
still differ by a factor of � /2.

IX. CONCLUSION

We have presented a quick derivation of the generalized
Langevin equation, emphasizing its connection with NEGF.
The inputs to run the Langevin dynamics can be calculated
in the standard way from a NEGF phonon transport calcula-
tion. The implementation details are given, such as the gen-
eration of colored noise vector 	. We found quite generically
that the lead self-energies contain delta-function peaks for
quasi-one-dimensional systems. These delta peaks represent
surface or edge modes. This complicates the molecular-
dynamics simulations. These delta peaks in the spectra have
to be removed in order to obtain a stable simulation. Addi-
tional parameters ��, f , Kon-site, and �� are introduced to
modify the nature of the leads and how they are coupled to
the center to obtain a stable dynamics. We hope that the
instability is specific to the systems of quasi-1D carbon
graphene strips or nanotubes. If the leads are modeled as
bulk three-dimensional systems, the noise spectra should be
more smooth and should produce a stable dynamics. The
quasiclassical approximation which results to the generalized
Langevin equation is analyzed using Feynman diagrams and
its results are compared with NEGF. It is found that, to lead
order, the nonlinear retarded self-energy agrees with NEGF

while �̄n does not, mainly due to the fact that QMD cannot
distinguish between G� and G�. As a by-product, we see
easily that QMD and NEGF agree for linear systems. QMD
also gives the correct classical limit. We presented test runs
and compared with NEGF for the thermal conductance. Long
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�n ,2� graphene strips are simulated to study the crossover
from ballistic transport toward diffusive transport. Effect of
strain is also studied. The results of carbon nanotubes are
also presented. Our simulations are one of the first examples
of the QMD on realistic systems. Finally, the quantum cor-
rection method is critically examined.
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